Teoria Cinética de La Materia
La teoría cinética de los gases es una teoría física y química que explica el comportamiento y propiedades macroscópicas de los gases (Ley de los gases ideales), a partir de una descripción estadística de los procesos moleculares microscópicos
domingo, 18 de enero de 2015
martes, 13 de enero de 2015
Deducción matemática presión y temperatura.
En el marco de la teoría cinética la presión de un gas es explicada como el resultado macroscópico de las fuerzas implicadas por las colisiones de las moléculas del gas con las paredes del contenedor. La presión puede definirse por lo tanto haciendo referencia a las propiedades microscópicas del gas.
Para describir la
interacción entre el gas y las paredes
conviene introducir el concepto de presión, que se obtiene dividiendo la fuerza
entre el área sobre la cual actúa la fuerza:
Presión =fuerza/área
En general se cree
que hay más presión si las partículas se encuentran en estado sólido,
si se encuentran en estado líquido es mínima la
distancia entre una y otra y por último si se encuentra en estado gaseoso se
encuentran muy distantes.
En efecto, para un
gas ideal con (N)
moléculas, cada una de masa (m) y moviéndose con
una velocidad
aleatoria (v),contenido en un volumen cúbico (V) , las partículas del
gas impactan con las paredes del recipiente de una manera que puede calcularse
de manera estadística intercambiando momento
lineal con
las paredes en cada choque y efectuando una fuerza neta por unidad de área que es la presión
ejercida por el gas sobre la superficie sólida.
La presión puede
calcularse como

Esta
fórmula relaciona una variable macroscópica observable, la presión, con la energía cinética promedio por molécula,que es
una magnitud microscópica no observable directamente.
La
ecuación anterior, nos dice que la presión de un gas depende directamente de la energía cinética molecular. La ley de los gases ideales nos permite asegurar que la presión es proporcional a la temperatura absoluta. Estos dos enunciados permiten realizar una de las
afirmaciones más importantes de la teoría cinética:
La
energía molecular promedio es proporcional a la temperatura.
La constante de
proporcionales es 3/2 la constante de Boltzmann,
que a su vez es el cociente entre la constante de los gases R entre el número de Avogadro. Este resultado
permite deducir el principio o teorema de equipartición de la energía.
La energía
cinética por Kelvin es:
·
Por mol 12,47 J
·
Por molécula 20,7 yJ = 129 μeV
En condiciones
estándar de presión y temperatura (273,15 K) se obtiene que la energía cinética
total del gas es:
·
Por mol 3406 J
·
Por molécula 5,65 zJ = 35,2 meV
Se puede
concluir, por tanto, que comparando dos gases que se encuentren a la misma
temperatura, adquirirá mayor velocidad aquel que tenga menor masa molecular, es
decir, aquel que sea más ligero. Análogamente, entre dos gases de igual masa
molecular se moverá más rápido aquel que tenga mayor temperatura.
Según la ley de Boyle, la frecuencia de las colisiones en la pared es proporcional a la velocidad molecular y, por tanto, inversamente proporcional a la raíz cuadrada de la masa molecular M. En consecuencia, a igualdad de temperaturas, las moléculas más livianas chocan con las paredes del recipiente más frecuentemente que las más pesadas, aunque estas últimas experimentan en la colisión una mayor variación del momento. Estos dos factores se anulan mutuamente y la presión del gas acaba siendo independiente de la naturaleza del gas.
A partir de la expresión de la velocidad, se puede concluir también que el valor mínimo de la temperatura absoluta es T = 0 K, este punto se conoce como cero absoluto de temperaturas, y si experimentalmente pudiera conseguirse, correspondería a una situación en la que las partículas estarían estáticas.
Según la ley de Boyle, la frecuencia de las colisiones en la pared es proporcional a la velocidad molecular y, por tanto, inversamente proporcional a la raíz cuadrada de la masa molecular M. En consecuencia, a igualdad de temperaturas, las moléculas más livianas chocan con las paredes del recipiente más frecuentemente que las más pesadas, aunque estas últimas experimentan en la colisión una mayor variación del momento. Estos dos factores se anulan mutuamente y la presión del gas acaba siendo independiente de la naturaleza del gas.
A partir de la expresión de la velocidad, se puede concluir también que el valor mínimo de la temperatura absoluta es T = 0 K, este punto se conoce como cero absoluto de temperaturas, y si experimentalmente pudiera conseguirse, correspondería a una situación en la que las partículas estarían estáticas.
domingo, 11 de enero de 2015
Movimiento Browniano
Éste fue descubierto en el año 1827 por R. Brown al observar al microscopio una
suspensión acuosa de granos de polen. Brown observó que las partículas se
movían constantemente siguiendo un patrón en forma de línea quebrada, y que la
velocidad de estas partículas era mayor entre más elevada fuera la temperatura.
Dicho movimiento tiene su origen en la energía cinética de
translación de las partículas dispersas, energía que se debe a la agitación
térmica. Estas partículas (al igual que las moléculas de los gases y que las
moléculas o iones de los solutos en disolución) se mueven de manera recta hasta
que chocan con otras partículas, en cuyo momento cambia la dirección en la que
se desplazan, haciendo que la trayectoria de la partícula que se observa sea
una línea quebrada, los choques entre las moléculas sobre la superficie se
producen de manera desordenada y en todas direcciones.
(En esta imagen se observa la trayectoria de las colisiones
o choques entre las moléculas)
Una teoría completa cuantitativa del movimiento Browniano,
que permitió explicar su naturaleza y sus peculiaridades características, fue
desarrollada en los trabajos de Einstein y Smoluchowski entre 1905 y 1906. Las
investigaciones relativas a este movimiento fueron de gran importancia en el
triunfo de la teoría cinético-molecular, ya que el movimiento Browniano fue el
primer proceso físico en el que la existencia de moléculas se hacía presente de
manera directa y obvia.
Suscribirse a:
Entradas (Atom)